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Abstract

Spectral Subtraction is often used for noise reduction and speech enhancement. It is an important tool of digital audio

signal processing. Since its introduction in 1979, several problems like Phase Errors, Cross-time Errors and 

Magnitude Errors cause rather disappointing results. Beyond these errors, there is a fundamental problem within the 

basic principles of Spectral Subtraction, which is documented in this publication.  

1. Introduction

Spectral Subtraction is a widespread method to dynamically 

process the spectrum of a digital audio signal. It gives you 

the possibility to edit a signal in a specific spectral range. 

The basis for this procedure is the discrete Fourier transform 

(DFT), which converts a time-series signal into the 

frequency domain and makes frequency analysis possible. In 

the spectral domain it is possible to edit individual spectral 

components, the so-called spectral coefficients. This makes 

it possible to subtract information from a specific frequency 

component. Finally, the processed signal can be 

resynthesized by means of an inverse discrete Fourier 

transform (iDFT). Therefore, the edited signal is available in 

the time domain once again. 

The crucial advantage of the Spectral Subtraction is given by 

the short-time Fourier transform (STFT). With the STFT, it 

is possible to decompose a continuous stochastic signal and 

transform each time segment into the spectral domain. 

There, the time segments can be edited one after another. 

After the inverse transformation, the time segments can be 

recomposed into a continuous signal. 

Because of the segmental processing, it is possible to edit 

each segment individually. This means, we can create an 

adaptive, real-time signal processing algorithm with a short 

latency. This is the reason for the importance of the Spectral 

Subtraction in the last decades. A multitude of applications 

use this technique, like noise reduction and speech 

enhancement. 

2. Fundamentals

2.1. Windowing of a Signal 

The segmentation of a continuous input signal 𝑥(𝑛) can be 

achieved with a window function 𝑤(𝑛), as we can see in 

Fig. 1. 

Each segment is multiplied with the window function 𝑤(𝑛): 

𝑥𝑤𝑖𝑛(𝑛) = 𝑥(𝜂𝑤𝑖𝑛 + 𝑛) ∙ 𝑤(𝑛) ,  (1) 

where 𝑛 = 0,1,2, … , 𝑁 − 1 is the discrete time index and 𝑁 

the length of the segments. The variable 𝜂𝑤𝑖𝑛 defines the

first sample of the current segment.  

Fig. 1: Windowing of a continuous input signal using the von-Hann 

window function with an overlap of 50%. 

An overlap of the segments is possible. Depending on the 

length of overlap, a compatible window function has to be 

chosen. The sum of the successive window functions always 

has to be one. This restriction is given in order to prevent a 

distortion of the signal within the resynthesis process, more 

precisely through the multiplication with the window 
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function. This means that the windowing must result in a 

constant amplification of 1. 

If we don’t want an overlap of segments, we can choose the 

rectangular window: 

𝑤𝑟𝑒𝑐𝑡(𝑛) =  1 ,  (2) 

with 𝑛 = 0,1,2, … , 𝑁 − 1. 

If we want an overlap of 50%, we can, for example, choose 

the von-Hann window function: 

𝑤ℎ𝑎𝑛𝑛(𝑛) =
1

2
−

1

2
cos (2𝜋

𝑛

𝑁 − 1
) , 

 (3) 

with 𝑛 = 0,1,2, … , 𝑁 − 1. 

In Fig. 2 you can see the von-Hann window functions for the 

segmentation of an input signal. Any window function can 

be used as long as the constraint of constant amplification is 

met. 

Because of the use of a window function, a segment is also 

called window. 

Fig. 2: Von-Hann window functions with a length of 2048 samples 

and their sum. 

2.2. Short-Time Fourier Transform 

After the segmentation of the input signal, the short-time 

Fourier transform (STFT) uses the Discrete Fourier 

transform to transport each window into the frequency 

domain. We obtain the DFT-coefficients using [4][8]: 

𝑋𝑤𝑖𝑛(𝑘) = ∑ 𝑥𝑤𝑖𝑛(𝑛)

𝑁−1

𝑛=0

∙ 𝑒−𝑗2𝜋𝑘
𝑛
𝑁 , 

 (4) 

where 𝑘 = 0, 1, 2, … , 𝑁 − 1 is the discrete frequency index. 

Each DFT coefficient represents a constant oscillation with 

the dedicated frequency 𝑓𝑘:

𝑓𝑘 = 𝑓𝑠 ∙
𝑘

𝑁
 , 

 (5) 

where 𝑓𝑠 represents the sampling frequency which was used

for the sampling during the digitalisation of the input signal. 

The absolute value of the DFT coefficient is the amplitude 

|𝑋𝑤𝑖𝑛(𝑘)| of the oscillation and ∠𝑋𝑤𝑖𝑛(𝑘) describes the

corresponding phase angle. 

By means of the inverse discrete Fourier transform we can 

transport the spectral signal 𝑋𝑤𝑖𝑛(𝑘) back into the time

domain [4][8]: 

𝑥𝑤𝑖𝑛(𝑛) =
1

𝑁
∑ 𝑋𝑤𝑖𝑛(𝑘)

𝑁−1

𝑘=0

∙ 𝑒𝑗2𝜋𝑛
𝑘
𝑁 , 

 (6) 

with 𝑛 = 0, 1, 2, … , 𝑁 − 1. Thus, the two signal sequences 

𝑥𝑤𝑖𝑛(𝑛) and 𝑋𝑤𝑖𝑛(𝑘) are a transform pair.

Finally, the processed signal segments can be recombined 

according to the defined overlap. 

2.3. Characteristics of the STFT 

The Short-time Fourier transform has a number of 

characteristics which are accurately described in the relevant 

literature [2][4][8][9]. Two of these characteristics are 

especially important for Spectral Subtraction: the periodicity 

and the resolution of time and frequency. 

2.3.1. Periodicity 

The exponential function 𝑒−𝑗2𝜋𝑘𝑛 𝑁⁄  behaves in a periodic

fashion depending on 𝑁. This results the periodicity of the 

DFT and consequently of the STFT [4][8]:  

𝑋𝑤𝑖𝑛(𝑘) = 𝑋𝑤𝑖𝑛(𝑘 + 𝑁)  (7) 

and 

𝑥𝑤𝑖𝑛(𝑛) = 𝑥𝑤𝑖𝑛(𝑛 + 𝑁) .  (8) 

2.3.2. Time Resolution and Frequency Resolution 

By using a clever analogy to the Heisenberg uncertainty 

principle, Küpfmüller points out that it is not possible to 

simultaneously achieve both a high resolution in time and in 

frequency within the spectral domain [7]. 

The background of this principle is the identical length 𝑁 of 

the transform pair consisting of the time-domain signal 

𝑥𝑤𝑖𝑛(𝑛) and the signal in the frequency domain 𝑋𝑤𝑖𝑛(𝑘). To

get a high frequency resolution, we need a preferably long 

signal length. Contrarily we achieve a high time resolution 

using a short window in the time domain as this enables us 

to compute an individual spectrum for each short time 

segment. 

Fig. 3-5 make this uncertainty principle clear. We can see 

several spectra over time. The test signal, which is a sine 

wave changing its frequency every second, was transformed 

into the spectral domain by means of STFT. The charts 

differ in the window lengths which were used for the STFT. 
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Fig. 3: Spectrogram of a sine wave changing its frequency every 

second. Analysed using STFT with a window length of 64 samples 

and a sampling frequency of 48kHz. 

Fig. 4: Spectrogram of a sine wave changing its frequency every 

second. Analysed using STFT with a window length of 512 

samples and a sampling frequency of 48kHz. 

Fig. 5: Spectrogram of a sine wave changing its frequency every 

second. Analysed using STFT with a window length of 8192 

samples and a sampling frequency of 48kHz. 

We can solve this conflict with the help of a process called 

‘Zero Padding’. To get a high frequency resolution for a 

short time segment we can add a number of zeros at the end 

of the windowed time signal: 

𝑥̃𝑤𝑖𝑛(𝑛) = {
𝑥𝑤𝑖𝑛(𝑛) 𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 𝑁 − 1

0 𝑓𝑜𝑟 𝑁 ≤  𝑛 ≤ 𝑁 + 𝐿 − 1 ,
 (9) 

where 𝑛 = 0, 1, 2, … , 𝑁 + 𝐿 − 1 and 𝐿 represents the number 

of the added zeros. Thus, it is possible to simultaneously 

achieve a high time resolution and a high frequency 

resolution within the STFT. 

2.4. Spectral Subtraction 

During Spectral Subtraction the amplitudes of two spectral 

signals are subtracted from each other. If |𝑋𝑤𝑖𝑛(𝑘)| is the

minuend and |𝑈𝑤𝑖𝑛(𝑘)| is the subtrahend, we obtain the

difference [3]:  

|𝑌𝑤𝑖𝑛(𝑘)| = |𝑋𝑤𝑖𝑛(𝑘)| − |𝑈𝑤𝑖𝑛(𝑘)| ∙ 𝜐(𝑘, 𝑝 = 1) ,  (10)

where 𝜐(𝑘, 𝑝) is a real weighting factor which regulates the 

subtrahend |𝑈𝑤𝑖𝑛(𝑘)|, so that |𝑌𝑤𝑖𝑛(𝑘)| cannot assume

negative values:   

𝜐(𝑘, 𝑝) = {

1 ∙ 𝜄   𝑓𝑜𝑟 |𝑈𝑤𝑖𝑛(𝑘)| ≤ |𝑋𝑤𝑖𝑛(𝑘)| 

|𝑋𝑤𝑖𝑛(𝑘)|𝑝

|𝑈𝑤𝑖𝑛(𝑘)|𝑝
∙ 𝜄    𝑓𝑜𝑟 |𝑈𝑤𝑖𝑛(𝑘)| > |𝑋𝑤𝑖𝑛(𝑘)| 

. 

 (11) 

The real factor 0 ≤ 𝜄 ≤ 1 defines the intensity of the Spectral 

Subtraction. If 𝜄 = 0, there is no subtraction. If 𝜄 = 1, the 

subtraction is maximal. The quotient of |𝑋𝑤𝑖𝑛(𝑘)| and

|𝑈𝑤𝑖𝑛(𝑘)| prevents that |𝑌𝑤𝑖𝑛(𝑘)| can become negative if the

absolute value of 𝑈𝑤𝑖𝑛(𝑘) is larger than the absolute value of

𝑋𝑤𝑖𝑛(𝑘).

If we don’t want to subtract the amplitudes, but the power, 

equation (10) is modified to produce |𝑌𝑤𝑖𝑛(𝑘)|:

|𝑌𝑤𝑖𝑛(𝑘)| = √|𝑋𝑤𝑖𝑛(𝑘)|2 − |𝑈𝑤𝑖𝑛(𝑘)|2 ∙ 𝜐(𝑘, 𝑝 = 2) .  (12)

A more general form can be written as: 

|𝑌𝑤𝑖𝑛(𝑘)| = (|𝑋𝑤𝑖𝑛(𝑘)|𝑝 − |𝑈𝑤𝑖𝑛(𝑘)|𝑝 ∙ 𝜐(𝑘, 𝑝))
1
𝑝 . 

 (13) 

This is often named parametric spectral subtraction [5] and 

sets a variable exponent. With 𝑝 = 1 we obtain the spectral 

subtraction from (10) and with 𝑝 = 2 we obtain the spectral 

subtraction of the power from (12). 

Combined with the phase ∠𝑋𝑤𝑖𝑛(𝑘)  of the input signal 

 𝑋𝑤𝑖𝑛(𝑘), the output signal can be computed with:

𝑌𝑤𝑖𝑛(𝑘) =  |𝑌𝑤𝑖𝑛(𝑘)| ∙ 𝑒𝑗∠𝑋𝑤𝑖𝑛(𝑘) .  (14) 

To an extent, this operating sequence is a makeshift method. 

It is to be expected that after the subtraction, the correct 

phase of 𝑌𝑤𝑖𝑛(𝑘) is not identical to the phase of the input

signal 𝑋𝑤𝑖𝑛(𝑘). Jens Groh asserts that the correct phase often 

cannot be derived [6]. Thus, in many cases, the correct phase 

of the output signal is simply unknown. Studies have shown, 

that phase corruption in the spectral domain is considerably 

less perceptible than a corruption of the amplitude in this 

domain [10]. 
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Finally, the output signal can be transformed back into the 

time domain by using the iDFT: 

𝑦𝑤𝑖𝑛(𝑛) =
1

𝑁
∑ 𝑌𝑤𝑖𝑛(𝑘)

𝑁−1

𝑘=0

∙ 𝑒𝑗2𝜋𝑛
𝑘
𝑁 . 

 (15) 

Thereby the output signal is as long as the input signal and 

consists of 𝑁 samples. 

3. Spectral Subtraction as a
Time-Variant System

The Spectral Subtraction can be considered as a time-variant 

system with a varying processing and parameters that can 

change from window to window. 

Hence, we are able to write the subtraction in the spectral 

domain from (13) as a multiplication: 

|𝑌𝑤𝑖𝑛(𝑘)| = (|𝑋𝑤𝑖𝑛(𝑘)|𝑝 − |𝑈𝑤𝑖𝑛(𝑘)|𝑝 ∙ 𝜐(𝑘, 𝑝))
1
𝑝

= |𝑋𝑤𝑖𝑛(𝑘)| ∙ (1 −
|𝑈𝑤𝑖𝑛(𝑘)|𝑝

|𝑋𝑤𝑖𝑛(𝑘)|𝑝
∙ 𝜐(𝑘, 𝑝))

1
𝑝

. 

 (16) 

Then the amplitude response of this system is: 

𝐻0(𝑤𝑖𝑛, 𝑘) =  (1 −
|𝑈𝑤𝑖𝑛(𝑘)|𝑝

|𝑋𝑤𝑖𝑛(𝑘)|𝑝
∙ 𝜐(𝑘, 𝑝))

1
𝑝

 , 

 (17) 

and the frequency response of each window is: 

𝐻𝑤𝑖𝑛(𝑘) = 𝐻0(𝑤𝑖𝑛, 𝑘) ∙ 𝑒𝑗∠𝐻𝑤𝑖𝑛(𝑘) .  (18)

Assuming ∠𝐻𝑤𝑖𝑛(𝑘) = ∠𝑋𝑤𝑖𝑛(𝑘), the equations (17) and (18) 

leads us to: 

𝐻𝑤𝑖𝑛(𝑘) =  (1 −
|𝑈𝑤𝑖𝑛(𝑘)|𝑝

|𝑋𝑤𝑖𝑛(𝑘)|𝑝
∙ 𝜐(𝑘, 𝑝))

1
𝑝

∙ 𝑒𝑗∠𝑋𝑤𝑖𝑛(𝑘).

 (19) 

Like the input signal 𝑋𝑤𝑖𝑛(𝑘), the frequency response

consists of 𝑁 DFT-coefficients. Thus, the spectral output 

signal 𝑌𝑤𝑖𝑛(𝑘) can be computed as a product of the spectral

input signal and the frequency response 𝐻𝑤𝑖𝑛(𝑘):

𝑌𝑤𝑖𝑛(𝑘) =  𝑋𝑤𝑖𝑛(𝑘) ∙ 𝐻𝑤𝑖𝑛(𝑘)  (20) 

A multiplication in the spectral domain corresponds to a 

convolution of the equivalent signals in the time domain [2]: 

𝑦𝑤𝑖𝑛(𝑛) =  𝑥𝑤𝑖𝑛(𝑛) ∗ ℎ𝑤𝑖𝑛(𝑛)

= ∑ 𝑥𝑤𝑖𝑛(𝑛) ∙

𝑁𝐼𝑅−1

𝑚=0

ℎ𝑤𝑖𝑛(𝑛 − 𝑚) ,

 (21) 

where ℎ𝑤𝑖𝑛(𝑛) describes the impulse response of the system

and 𝑁𝐼𝑅 is the length of this impulse response.

4. The Fundamental Problem

4.1. The Length of the Output Signal 

The length of the output signal of a convolution is [2]: 

𝑁𝑐𝑜𝑛𝑣 =  𝑁𝑖𝑛𝑝𝑢𝑡 + 𝑁𝐼𝑅 − 1 ,  (22) 

where 𝑁𝑖𝑛𝑝𝑢𝑡 is the length of the input signal, 𝑁𝐼𝑅 is the

length of the impulse response and 𝑁𝑐𝑜𝑛𝑣  is the length of the

convolved signal. 

Considering the convolution in (21), both the input signal 

and the impulse response are of length 𝑁. Therefore, the 

output signal consists of 2𝑁 − 1 samples. 

This means, that the output signal computed using convolution 

in the time domain is nearly twice as long as the output 

signal which is computed using Spectral Subtraction in the 

spectral domain and which has 𝑁 samples. Thus, the output 

signal 𝑦𝑤𝑖𝑛(𝑛) in (21) cannot be the same as the output

signal in (15) with (13) and (14), as we can see in Fig. 6. 

The reason for this is the static signal length in the spectral 

domain and the periodicity of the DFT. The periodicity 

presupposes a continuous repetition of the finite output 

signal. The modifications of the DFT coefficients cause an 

extension of the signal when transformed back into the time 

domain. The part of the processed signal after the 𝑁th 

sample will be continued at the beginning of the window. 

Since the STFT does not take this repetition at the 

recombination of the windows into account, an error 

inevitably occurs. We receive an overlap with a signal part, 

which is inserted at the wrong time position. This error 

becomes apparent when the signal is compared directly with 

the output signal, which is computed by convolution in the 

time domain. In Fig. 6 we can see the differences between 

the output signal of the Spectral Subtraction and the output 

signal of the convolution.  

4.2. Zero Padding is no Solution 

By using zero padding, we can reduce the effective length of 

the input signal in relation to the length of the window 

𝑁𝑖𝑛𝑝𝑢𝑡 + 𝐿. Consequently, the length of the frequency

response 𝐻𝑤𝑖𝑛(𝑘) increases and for this reason the length of 

the impulse response ℎ𝑤𝑖𝑛(𝑛) will increase up to the 

extended window length of 𝑁𝑖𝑛𝑝𝑢𝑡 + 𝐿 samples.

The constraint that the output signal fits into the window 

without an overlap is only fulfilled in the case of 𝑁𝑖𝑛𝑝𝑢𝑡 = 1:

𝑁𝑖𝑛𝑝𝑢𝑡 + 𝑁𝐼𝑅 − 1 ≤ 𝑁𝑖𝑛𝑝𝑢𝑡 + 𝐿

2𝑁𝑖𝑛𝑝𝑢𝑡 + 𝐿 − 1 ≤ 𝑁𝑖𝑛𝑝𝑢𝑡 + 𝐿

𝑁𝑖𝑛𝑝𝑢𝑡 ≤ 1 .

 (23) 

This case is unusable for Fourier analysis. 
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4.3. An Example to Illustrate 

To illustrate the behaviour of the DFT in combination with 

Spectral Subtraction we generate a window of a synthetic 

input signal: 

𝑥(𝑛) = cos (2𝜋
𝑛

𝑁
) + sin (4𝜋

𝑛

𝑁
) + cos (8𝜋

𝑛

𝑁
), (24)

with 𝑁 = 16 and 𝑛 = 0,1,2, … , 𝑁 − 1. The result is the 

black graph in Fig. 6. We multiply this input signal with the 

von-Hann window function from (3): 

𝑥𝑤𝑖𝑛(𝑛) = 𝑥(𝑛) ∙ 𝑤ℎ𝑎𝑛𝑛(𝑛) .  (25) 

To get a better frequency resolution we add 16 zeros: 

𝑥̃𝑤𝑖𝑛(𝑛) = {
𝑥𝑤𝑖𝑛(𝑛) 𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 15

0 𝑓𝑜𝑟 16 ≤ 𝑛 ≤ 31 .
 (26) 

We receive the windowed input signal with zero padding, as 

illustrated by the blue graph of Fig. 6.  

As an example, we reduce the third, fifth and ninth DFT 

coefficients by about 70%, using Spectral Subtraction and 

(4), (10) and (14). The result is the output signal of the 

Spectral Subtraction, shown as the orange graph. Now we 

compare this result with the equivalent processing using 

convolution in the time domain. By means of (19) with 𝑝 = 1 

and (21), we receive the green graph. The difference of these 

two output signals (red graph) shows the wrongly inserted 

part of the signal, occurring due to the periodicity of the 

DFT. 

5. Analysis of the Impulse Response

If we look to the impulse response ℎ𝑤𝑖𝑛(𝑛) of the Spectral

Subtraction, which is the inverse Fourier transform of 

𝐻𝑤𝑖𝑛(𝑘):

ℎ𝑤𝑖𝑛(𝑛) =
1

𝑁
∑ 𝐻𝑤𝑖𝑛(𝑘)

𝑁−1

𝑘=0

∙ 𝑒𝑗2𝜋𝑛
𝑘
𝑁 , 

 (27) 

it becomes apparent, that the maximum of the impulse response 

is located at the first sample 𝑛 = 0, as we can see in Fig. 7. 

Fig. 6: Comparison of Spectral Subtraction using STFT and the equivalent processing with a convolution in the time domain. A windowed 

test signal of 16 samples is processed with Spectral Subtraction in the spectral domain and with a convolution in the time domain. The last 

diagram shows the signal part which is at the wrong position in the output signal when processed with the Spectral Subtraction. 
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Fig.7: Impulse response of the Spectral Subtraction, computed with (10) 

and (14). The third, fifth and ninth DFT coefficients are reduced by ~70%. 

Fig. 8: Phase response of the Spectral Subtraction, computed with (10) 

and (14). The third, fifth and ninth DFT coefficients are reduced by ~70%. 

Fig. 9: Group delay response of the Spectral Subtraction, computed 

with (10) and (14). The third, fifth and ninth DFT coefficients are reduced 

by ~70%. 

Furthermore, the samples 𝑛 = 1 to 𝑛 = 31 are axis-

symmetric to 𝑛 = 16. This impulse response behaves as if 

multiplied with the Heaviside step function: 

ℌ(𝑛) = {
0 𝑓𝑜𝑟 𝑛 < 0
1 𝑓𝑜𝑟 𝑛 ≥ 0 ,

 (28) 

and shows a nonlinear phase shift, as we can see in Fig. 8 

and a strong varying group delay depending on frequency, as 

we can see in Fig. 9. We obtain the strongest group delay at 

the three processed DFT coefficients. 

To prevent nonlinear phase shifting and an inconstant group 

delay, we must shift the phase within the processing in the 

spectral domain, depending on frequency. The phase of the 

DFT coefficients representing high frequencies with a short 

wavelength have to be shifted more than the phase of DFT 

coefficients representing low frequencies. For an impulse 

response with an even length and an even symmetry we 

obtain the phase difference [2][9]: 

𝜃(𝑘) = −
𝑁 − 1

2
Ω , 

 (29) 

where Ω = 2πk 𝑁⁄  is the normalized complex angular frequency. 

If we include this phase difference in (14), we receive: 

𝑌𝑤𝑖𝑛(𝑘, 𝜃) =  |𝑌𝑤𝑖𝑛(𝑘)| ∙ 𝑒𝑗∠𝑋𝑤𝑖𝑛(𝑘) ∙ 𝑒𝑗𝜃 .  (30) 

We can call this enhanced algorithm ‘Advanced’ Spectral 

Subtraction.  

In Fig. 10–12 we can see the symmetric impulse response, 

the linear phase response and the constant group delay of the 

Advanced Spectral Subtraction using (10) and (30). 

Fig. 10: Impulse response of the Spectral Subtraction, computed with 

(10) and (30). The third, fifth and ninth DFT coefficients are reduced by 

~70%. 
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Fig. 11: Phase response of the Spectral Subtraction, computed with (10) 

and (30). The third, fifth and ninth DFT coefficients are reduced by ~70%. 

Fig. 12: Group delay response of the Spectral Subtraction, computed 

with (10) and (30). The third, fifth and ninth DFT coefficients are reduced 

by ~70%. 

As we can see in Fig. 12, the Advanced Spectral Subtraction 

results in a constant group delay, which also means that the 

processing has a latency of one half window length. 

Finally, we can take a look at the two magnitude responses, 

computed by Spectral Subtraction using (10) and (14) and by 

the Advanced Spectral Subtraction using (10) and (30). 

The two magnitude responses show strong similarity. We 

can see the three attenuations, with the red one providing a 

slightly narrower band width. It also becomes apparent that 

the Spectral Subtraction with linear phase has a low-pass 

behaviour at very high frequencies. This is the result of an 

impulse response with an even length and an even symmetry 

[2][9]. In the vast majority of cases, this behaviour is of little 

to no consequence. For example, in digital audio signal 

processing with a sampling frequency of 𝑓𝑠 = 48𝑘𝐻𝑧, the

cut off is located above the upper limit of human perception. 

Fig. 13: Magnitude response of the Spectral Subtraction. The blue 

graph is computed with (10) and (30) and the red graph is computed 

with (10) and (14). The third, fifth and ninth DFT coefficients are reduced 

by ~70% within the processing. 

6. Conclusion

We can state that processing in the frequency domain makes 

the signal longer. The signal part by which the output signal 

is longer than the input signal corresponds to the transient 

effect and decay process of the impulse response. The 

crucial point is to arrange the transient and decay parts at the 

correct time position in the output signal. 

If we do the processing in the spectral domain via STFT, 

because of the periodicity, we receive an overlap in the 

output signal during resynthesis. This means, that we have a 

signal part at the wrong time position. Since the STFT does 

not take this repetition into account, an error inevitably 

occurs. 

The subjective perception of this error is relatively small. 

Furthermore, it is not the reason of the artefact called 

‘musical noise’. Presumably, the resulting error is covered 

by stronger artefacts like the aforementioned ‘musical 

noise’, which can occur because of a dynamic processing in 

the spectral domain, too. 

Irrespective of this, it is recommended to work around this 

error. For example, the resulting amplitude response can be 

smoothed. This approach minimizes the error, but it does not 

completely prevent it. To obtain the correct output signal, 

the frequency response can be generated. By means of the 

iFFT, we receive the impulse response of the processing. 

Now it is possible to compute the output signal with 

convolution of the windowed input signal and the impulse 

response in the time domain. This means, that the algorithm 

has more calculating steps and needs more time for the 

processing. However, with the fast convolution we have a 

fast-acting tool, which uses the fast Fourier Transform FFT.  

The question arises as to why the fast convolution can 

compute the output signal without an error while still using 

the DFT. When we use the fast convolution, we have the 
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windowed input signal and the complete processing 

information within the impulse response. We don’t have to 

generate the frequency response in the spectral domain. The 

fast convolution fills up the windowed input signal and the 

impulse response with enough zeros to fit the entire output 

signal into the window. 

This is still not possible if we generate the frequency response 

of the Fourier transformed window with the input signal in 

the spectral domain, like the Spectral Subtraction does. In 

this case, the frequency response and for this reason the 

impulse response are always as long as the transformed 

window. Therefore, the output signal does never fit into the 

window. 

We can conclude that Spectral Subtraction has a fundamental 

problem within its approach. But it is possible to work 

around this weak spot and prevent the occurring error. 

Furthermore, we can use a phase shift within the processing, 

so that the ‘Advanced’ Spectral Subtraction does not have 

any nonlinear phase response or inconstant group delay. 
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